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Abstract

We have developed a new computer algorithm for determining the backbone resonance assignments for biopolymers. The
approach we have taken, relative hypothesis prioritization, is implemented as a Lua program interfaced to the recently
developed computer-aided resonance assignment (CARA) program. Our program can work with virtually any spectrum
type, and is especially good with NOESY data. The results of the program are displayed in an easy-to-read, color-coded,
graphic representation, allowing users to assess the quality of the results in minutes. Here we report the application of the
program to two RNA recognition motifs of Apobec-1 Complementation Factor. The assignment of these domains demon-
strates AutoLink’s ability to deliver accurate resonance assignments from very minimal data and with minimal user

intervention.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

With the dawn of structural genomics, researchers
worldwide have embarked on an ambitious new goal
in biotechnology: to obtain at least one structure repre-
senting every protein fold [1]. This is reminiscent of the
early stages of the genomics projects [2] where the goal
had been defined long before the techniques had been
developed to accomplish the task at hand. Indeed, the
drive for more macromolecular structure-based knowl-
edge has already lead to the development of several
new methodologies, including rapid high-throughput
micro-array crystal screening for crystallography, and
rapid data collection methods like GFT NMR [3]. Pre-
requisite to the success of modern proteomics is the
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development of high-throughput data analysis and
structure determination techniques.

NMR structure refinement has benefited from ad-
vanced semi-automated and automated NOE assign-
ment and structure calculation software like ARIA [4]
and CANDID [5,6]. Unlike for crystallographic data,
however, the direct analysis of NMR data by comput-
ers has been largely limited due to the nature of the
data. Crystallographic data consist of a regular array
of points, whose relative intensity contains the struc-
tural data. NMR data, on the other hand, consist of
a collection of non-discrete data points (peaks in spec-
tra), which are initially used to determine the resonance
frequencies of the various nuclei of the various spin
systems contained within the macromolecule. The
points of interest in an NMR spectrum are not con-
strained to a regular array, and often much of the data
is simply not observable due to physical limitations of
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NMR spectroscopy. Furthermore, spectral data are
often degenerate, leading to more than one possible
solution unless several different types of NMR experi-
ments are used simultaneously. For these reasons,
automation of the initial stages of NMR data analysis,
specifically assignment of resonance frequencies, has
been problematic.

Earlier approaches to automated resonance assign-
ment have generally required a high number of spe-
cialized NMR experiments [7]. The acquisition of
these data is time consuming, and often not feasible,
especially for larger molecules where dynamic limita-
tions of the molecules hinder spectral acquisition.
These specialized spectra are often quite tedious for
viewing and use by human researchers due to the lim-
ited amount of data present in each one, and also due
to the large number of spectra that must be used to
make resonance assignments. This makes it very diffi-
cult for researchers to interact with the software in or-
der to guide its analysis.

More recent methods have focused on developing
algorithms that allow computers to work in a manner
that is similar in approach to existing semi-automated
methodologies, only with machines doing some of the
work that traditionally is done by human operators
(8,9].

We have developed a new program that expands on
this latter approach. Our program, AutoLink, ana-
lyzes data from conventional NMR assignment spec-
tra. Since it relies on intra- and inter-residue data
that are incorporated into the “‘spin-system-based” ob-
ject model of its host program, CARA [10], AutoLink
can work with data from virtually any spectrum type,
with no specific types required. Since the program can
use conventional assignment spectra, it is easy for the
user to review and edit the program’s results using
AutoLink’s graphical displays and CARA’s user-intui-
tive interface. The primary advantages of AutoLink
over other existing programs largely result from more
sophisticated ““fuzzy logic” [11-16] and ‘“relative
hypothesis prioritization” (RHP), a process we have
developed which simulates very ‘“human-like” logic
with a computer’s speed and accuracy. The RHP ap-
proach gives AutoLink the unique ability to assess
what can be determined in each NMR assignment
problem and avoid over-assigning sequences which
cannot be unambiguously determined. This allows
the program to give reliable results even from minimal
data. It is also significant that AutoLink does not use
any absolute criteria for its assignment strategy,
relying entirely on relative criteria for the evaluation
of chemical shift assignments.

In this paper we report the use of AutoLink to assign
two RNA recognition motifs (RRMs) of Apobec-1
Complementation Factor (ACF) [17] using a low num-
ber of NMR experiments.

2. Materials and methods
2.1. NMR samples

NMR samples of RRMs 2 (leucine 138-glycine 208)
and 3 (leucine 233-glycine 293) from ACF were kindly
provided by Christophe Maris in the laboratory of Fred-
eric Allain (ETH, Zurich). The overall length of each
protein construct was 108 and 115 residues for RRM
2 and 3, respectively, including sequences derived from
the multiple cloning site of the pet22 expression vector.
The RRM 3 sample was 2 mM protein, 200 mM NaCl,
and 10 mM NaH,PO,, pH 6.5. The RRM 2 sample was
I mM protein and 1 mM target RNA (sequence:
UUUGAUCAGUAUAUCC—included for reasons of
solubility), 10 mM NaCl, and 10 mM NaH,PO,, pH
6.5.

2.2. Spectroscopy

A'>N-HSQC [18-20], an HNCA [18-20], a CBCA
(CO)NH [21], and a '""N-NOESY-HMQC [18-20] were
acquired for both RRMs 2 and 3 of ACF1. All spectra
were acquired on a Bruker DRX 600 MHz spectrometer
except for the NOESY spectra which were acquired on a
Bruker 900 MHz spectrometer. See Table 1 for acquisi-
tion and processing parameters.

2.3. Computations

2.3.1. Algorithm overview

The main goal of AutoLink is to assign backbone res-
onances in macromolecules. For clarity, the majority of
this discussion will assume that the molecule under
investigation is a protein. Technically, AutoLink’s algo-
rithm can be used on any modular polymer for which
NMR data are acquirable. This includes DNA and
RNA since AutoLink is capable of using NOESY
spectra.

In order to facilitate description of the algorithm
used by AutoLink, it is necessary to define the term
“spin system’ as it applies to the program. A “‘spin
system,” for the purposes of this algorithm, is defined
as a group of coupled resonances, called “‘spins,” visu-
alized as crosspeaks in one or more NMR spectra. This
definition is inherited from AutoLink’s host program
CARA. Since AutoLink cannot yet directly view the
NMR spectra, the spin systems must be defined by
the user prior to running the program. This is a simple
task and can be accomplished either manually using
CARA’s user interface to view and annotate the
NMR spectra, or semi-automatically using an auto-
matic spin-system-based peak picker followed by user
inspection/editing of the results.

Once the user has identified the spin systems in the
NMR data, AutoLink can then try to figure out which



J.E. Masse, R. Keller | Journal of Magnetic Resonance 174 (2005) 133-151 135

Table 1

Spectral acquisition and processing parameters
Dimension Time domain Sweep width Dwell time Carrier Apodization Size

(points) (ppm) (ps) (ppm) (function, phase) (points)

RRM 2

HSQC 'H 2048 14 59.6 4.7 sin, /2 2048
N 256 36 228.3 116.0 sin, /2 512

HNCA 'H 2048 14 59.6 4.7 sin, /2 2048
SN 64 34 241.81 118.0 sin, m/2 256
3¢ 60 32 103.54 56.0 sin, /2 256

CBCA(CO)NH 'H 2048 14 71.4 4.7 sin, /2 2048
SN 76 34 290.15 118.3 sin, m/2 256
e 72 60 66.26 53.0 sin, /2 256

SN-NOESY 'H 2048 11 50.4 4.7 sin, /2 1024
SN 80 42 130.5 116.0 sin, m/2 128
'H 256 11 50.5 4.7 sin, /2 512

RRM 3

HSQC 'H 2048 14 39.9 4.7 sin, /2 2048
SN 256 36 152.3 118.7 sin, m/2 512

HNCA 'H 2048 14 59.6 4.7 sin, /2 2048
BN 64 34 241.8 118.0 sin, /2 256
3¢ 60 32 103.54 56.0 sin, m/2 256

CBCA(CO)NH 'H 2048 15 55.6 4.7 sin, /2 2048
BN 76 34 241.8 116.0 sin, /2 256
3¢ 96 60 55.22 45.0 sin, m/2 256

ISN-NOESY 'H 2048 11 50.4 4.7 sin, m/2 1024
BN 72 42 130.5 116.0 sin, /2 128
'H 256 11 50.5 4.7 sin, /2 512

Acquisition parameters for spectra used to assign RRMs 2 and 3 from ACF. None of the spectra were acquired for more than 48 h.

spin systems are adjacent in the protein sequence and
form a “link” between them. In the case of conventional
3D protein assignment spectra, this can be viewed as
“linking”” amide-correlated strips within the 3D spectra.
A set of two or more linked spin systems are called a
“fragment.” Once fragments have grown long enough,
the chemical shifts of their spin systems can be used to
assign the fragment to specific residues of the protein.
This is the ultimate goal of the program (see Fig. 1 for
a diagram of AutoLink’s algorithm).

The algorithm used by AutoLink to form spin sys-
tem links can be divided into two main parts, (1) spin
system pair scoring (upper right box of Fig. 1) followed
by (2) link hypothesis evaluation/re-evaluation (lower
right box of Fig. 1). Spin system pair scoring is basi-
cally a search for potential spin system links based
on comparing relevant spins within the spin systems.
In order to find all potential matches, all possible spin
system pairings must be considered and a “fitness”
score is calculated for each. A pair of spin systems
and their score is called a “link hypothesis.” The fitness
score for any particular link hypothesis is actually itself
a function of one or more sub-scores. The sub-scores
are calculated by comparing specific resonances within
the spin system pair (i.e., comparing the C, spin of one
spin system with the C,_; spin of another spin system,

comparing the Cg and Cg_; spins of spin systems, com-
paring all of the NOE spins of one spin system with
those of another spin system, etc.). The actual mathe-
matical functions used to compare spins within spin
systems, and how the individual sub-scores are com-
bined in order to calculate the overall fitness score
for each link hypothesis, are user-defined. A more de-
tailed description of the evaluation of spin-system pair
fitness is described in Section 2.3.2. Together all of the
link hypotheses form a list of potential spin system
links called the “priority list.” Thus the priority list
can be viewed as a set of link hypotheses, each associ-
ated with a fitness score, which is a function of spectral
data only, and without any consideration of the pro-
tein sequence.

Once the priority list has been created, AutoLink
starts “hypothesis evaluation/re-evaluation” cycles
(Lower right box of Fig. 1). These cycles involve modi-
fying the link hypothesis fitness scores by factors that
are dependent on the acceptance or rejection of other
link hypotheses.

The first modification of the link hypotheses fitness
scores in each cycle involves considering how the
resulting fragment formed by any given link hypothesis
would fit into the protein sequence. These newly mod-
ified scores are stored in the “‘base priority prime list.”



136 J.E. Masse, R. Keller | Journal of Magnetic Resonance 174 (2005) 133-151

spin system pair scoring

picked spin n !
— initial pairwise scorin
systems (CARA) Il %l El J o 81 gi9
£y Yy v
spin density biasing
: . * v F % 4 ¥ ¥
| picked spins | sin Iabel biasing
N2 I A
T offest biasing
I T
| NMR spectra | OJOT qorPe bem
User input from CARA fCOJe Ihr?shfjfofn%

overall pairwise scoring
(with scoring equation)

v

priority list

hypothesis evaluation/
re-evaluation cycles

— Sequence matching 1

base priority
prim% list
existing spin Relativity biasing
system links Random biasing
A HULWINE.
Repetition frosmg

relative priority
prime list

(1) Accept best spin
system link hypotheses

output fo CARA < | (2) Delete worst
spin system links

Fig. 1. Schematic showing overall flow of AutoLink algorithm. Input (upper left box) is obtained from CARA in the form of pre-defined spin
systems consisting of correlated resonances in NMR data. Initially this input is used to generate a series of spin system link hypotheses which together
make up the priority list (upper right box). The link hypotheses are composed of a spin system pair and a score representing a relative probability that
the spin system pair corresponds to adjacent residues in the protein sequence. After the initial scoring is completed, the scores in the priority list are
modified during the hypotheses evaluation/re-evaluation cycles (lower right box) according to matching of hypothetical fragments to the protein
sequence, creating the base priority list, and subsequently by a series of logical biases, creating the relative priority prime list. These logic biases
(“relativity biasing,” “random biasing,” and “‘repetition biasing”) are discussed in Sections 3.2.1-3.2.3, respectively, and are important in AutoLink’s
logical decision making. During these cycles AutoLink both accepts and rejects link hypotheses based on relative criteria (RHP). Once AutoLink has
“decided” that no more link hypotheses are determinable, the program halts the hypothesis evaluation/re-evaluation cycles and reports its results to
the user through its graphical interface (see Fig. 5) and output files.

During the initial hypothesis evaluation/re-evaluation
cycle, of course, the entire protein sequence is yet unas-
signed, and is thus available for consideration for each
link hypothesis. In later rounds, once some sequences
of the protein have already been assigned, these prior
assignments must be taken into account when evaluat-
ing link hypotheses. Details of how AutoLink fits

hypothetical fragments to the protein sequence are pre-
sented in Sections 3 and 3.1.

After consideration of fragment fitting to the protein
sequence, the base priority prime list is then further pro-
cessed by logical biases, which are the heart of Auto-
Link’s RHP decision-making process. These biases
allow the program to mimic “human” logic and are
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described in detail later in Section 3.2. The final, logi-
cally biased list is called the “‘relative priority prime list”
and contains a series of link hypotheses, ranked accord-
ing to their relative likelihood of being consistent with
the NMR data, the protein sequence, and with other
link hypotheses. Once the relative priority prime list
has been created, AutoLink can make the decision to ac-
cept or reject link hypotheses based on the fitness scores
in the list. However, since acceptance and rejection of
link hypotheses affect the scores within both the base
priority prime list and the relative priority prime list, it
is only possible to accept or reject a small number of link
hypotheses before these lists must be re-calculated.
Thus, only a few link hypotheses are accepted or re-
jected during each cycle, and each cycle is followed by
a re-calculation of the priority prime lists. The process
ends when the program determines that none of the
remaining link hypotheses can be accepted, and that
there are no reasonable alternatives for the existing spin
system links. Evaluation, acceptance, and rejection of
link hypotheses are described in much greater detail in
Section 3.2.4.

2.3.2. Spin system pair scoring

The initial stage of the algorithm loops through all
spin system pairs and calculates scores that are depen-
dent on the relatedness of the spins of the spin systems.
These scores can be viewed as a measure of how likely
each spin system pairing corresponds to adjacent spin
systems within the protein with higher scores signifying
higher probability.

Each spin system pair is scored according to one or
more user-selected types, ie., Cy, Cg, CO, H (NOE),
etc. Each type selected generates a separate ‘“‘sub-score”
for any given spin system pair. The overall score for
each spin system pair is then calculated as a user-defined
combination of the individual sub-scores (see Section
2.3.2.6). A schematic of the overall approach to spin sys-
tem pair scoring is shown in Fig. 2.

Calculation of each sub-score type is governed by the
following equation:

PIDIAC)! (1)

sl 52

Here > ;; and >, stand for all of the spins (resonances)
comprising each spin system (spin system 1 and spin sys-
tem 2, respectively), and f(4) is a user-defined function
describing a mathematical comparison of each spin of
spin system 1 with each spin of spin system 2 depending
on their chemical shift difference and modified by user-
controlled factors (described below). In general the
relatedness of each spin of spin system 1 to each spin
of spin system 2, f(4), is defined by the following
equation:
(ax 4)

f(4) =rel_score =1 - %6 (2)

where a, b, and c¢ are user-defined constants optimizable
with AutoLink’s graphical interface. 4 is the absolute
value of the difference in the chemical shifts of the two
spins. If rel_score is negative it is increased to 0. Thus,
the basic spin pair scoring function produces values that
range from O to 1, with spins that are further apart from
each other in ppm scoring lower than those that are
close together. Only spin pairs with labels or atom types
appropriate to the score type are considered relevant.
For example, when scoring C,’s, only spins that are con-
sidered by AutoLink to potentially be C,’s or C,_1’s are
used to generate the spin system pair score. The identity
of each spin is determined by either its label (i.e “C,” or
“Cq—1") in CARA if it has been defined by the user, or
by the atom type (““C” for carbon nuclei) in conjunction
with chemical (i.e., 36 <chemical shift <76 ppm for
compatibility with C, scoring). Each spin pair related-
ness score is additionally biased according to several
user-controlled functions, which determine how the pro-
gram interprets spin density, overlap, the labeling of
each spin, the atom name in each atom label, and the
offset in spin label. Each of these biases is described in
detail below.

2.3.2.1. Spin density bias. Spins that occur at uncom-
mon chemical shifts are often more valuable for deter-
mining spin system linkages than spins that occur at
relatively common ppm values. For this reason it is
useful to bias the spin scores accordingly. In AutoLink
this is called spin density biasing and is controlled by a
user-defined parameter which has valid settings be-
tween 0 and 1. Spin pair scores are modified according
to the formula:

sdc X score_,
rel_score’ = (1 — sdc) x rel_score + < ,

density,_ s
(3)

where rel_score is the base relatedness score of spin 1
and spin 2 of the spin pair, rel_score’ is the density-com-
pensated relatedness score, and sdc is a user-defined in-
put parameter. density,_,s refers to the average base
relatedness score of spin 1 with all spins from all of
the spin systems and is called the spin density. Thus
the spin pair relatedness scores are adjusted proportion-
ally to the inverse of spin density of the first of the spins
in the spin pairs. This causes spins with more unusual
chemical shifts to weigh more heavily than those with
common chemical shifts when calculating the related-
ness of spin systems. As with most of AutoLink’s con-
trols, spin density biasing can be partial (0 < sdc <1),
with only a fraction of the base score being adjusted,
none (sdc =0), or all (sdc = 1). Spin density biasing is
generally useful for scoring of all data types, but is espe-
cially important for scoring high-density spins like 'Hs
in NOESYs.
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Ca Consider only spin system pairs with compatible Ca (ignore other spins).
HxCa Consider only spin system pairs with compatible Cas and H xpeaks (NOESY) in common.
HxCaxCp Consider only spin system pairs with compatible Cas, compatible Cps, and H xpeaks in common.
Cax(H+Cp) Consider only spin system pairs with compatible Cas and either compatible Cps or H xpeaks
in common.
H&&Co Consider only spin system pairs with compatible Cas and H xpeaks in common.
HJ|Ca Consider only spin system pairs with either compatible Cas or H xpeaks in common.
H&IC Consider only spin system pairs with either compatible Cas or H xpeaks in common, but
= especially favor those with both.
2 Consider only spin system pairs with stringently compatible Cas and at least one of the following:
Co'x(H+Cp+CO) H xpeaks in common, compatible Cps, or compatible COs.

Fig. 2. (A) Diagram of spin-system pair scoring. The spins of both spin systems (represented here by crosspeaks in spectra) are compared using a
user-defined scoring function. Spin comparisons are signified by lines connecting relevant points in the NMR spectra. Model sub-scoring functions
are plotted in gold at the top of the figure. The sub-scores are calculated by adding together all of the relevant comparison scores of each spin of one
spin system (ss1) with each spin of another spin system (ss2). After the individual sub-score types (C, and H (NOE) are shown here) are calculated,
they are then combined to form an overall spin-system pair score. The manner in which they are combined is determined by a user-defined scoring
equation (see Section 2.3.2.6 in the main text). The overall scores are recorded in the “priority list.”” (B) Examples of scoring equations and literal
interpretation. The left column shows examples of valid scoring equations demonstrating a variety of operations including the quasi-operators “&&,”
“|,> and “&|.” The literal interpretations in the right column are pneumonic approximations of the operations presented in the scoring equations.

2.3.2.2. Assigned spin bias. When picking peaks, it is
sometimes impossible to be sure what spin assignment
to give to a particular spin. Therefore, AutoLink can
work with unlabeled spins. It is, however, logical to bias
scoring in favor of less ambiguous spins. This bias can
be controlled in AutoLink according to the equation:

rel score' = (1 — asb) X rel_score,iapeica + asb

(4)
where rel_score’ is the modified score, asb is the user-
defined input parameter, rel score,apeica 18 the spin
pair score irregardless of spin labeling, and score;,peieq
is the spin pair score considering labeling. If both
of the spins of the spin pair are labeled, then

X rel_score peied,

SCOT€ peted = SCOTCypiupeled- Otherwise  scorepereq = 0.
Thus if ashb =1 only spin pairs where both spins in-
volved are labeled can score >0. Likewise, if asb =0,
all spin pair labels will not affect the spin pair score at
all. Intermediate values for asb cause fractional biasing
of the spin pair score. Biasing for assigned spins is
important for most assignment spectra, where most of
the spin labels are relatively easy to determine. It is gen-
erally useful to set asb = 0 when one needs to assign spin
systems whose spins cannot be unambiguously labeled
prior to backbone resonance assignment (such as 'H
spins obtained from NOESY spectra). Additionally, as-
signed spin bias can be used to help assign overlapped
spin systems. In such cases, one can include each spin
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in each of the overlapped spin systems, set asb <1, and
allow AutoLink to try and find the best related spin sys-
tems in the absence of predetermined spin assignments.
This is helpful because it allows AutoLink to search for
possible spin system pairs without user-bias.

2.3.2.3. Offset bias. For some spins, while it may be pos-
sible to identify the type of nucleus (C,, for example), it
is sometimes difficult to determine whether the cros-
speak represents an intra- or inter-residue correlation.
This is fairly frequent, for example, when identifying
C, and C,_; peaks in HNCA spectra in cases where
no corroboration from an HN(CO)CA is possible either
because no such spectrum is available or because the
spin system in question does not appear in the HN(CO)-
CA spectrum. Occasionally the C, and C,_; crosspeaks
are occasionally nearly equal in intensity in the HNCA
or there is too little signal above the noise to be sure
which is which. In order to address this potentiality, it
is possible to decrease the final score’s dependence on
the offset of the spin label (i.e., the “—1" in “C,_;).
In AutoLink this is accomplished by modifying the scor-
elapbeled COMponent in the above equation as follows:

rel_score’ = (1 — ob) x rel_scoreupeiea + 0b

X rel_score apeied-offsets (3)

where rel_score,, ., 13 the new labeled score compo-
nent, ob is the user-defined control parameter, rel scor-
€labelea 18 the spin pair score considering the presence of
labels but ignoring offsets, and rel_score;upeieqrofser 1 the
spin pair score considering the offset. If 0b is 0, then the
offsets in the spin labels will be irrelevant to the spin pair
relatedness score. If 0b is 1, then scores >0 are only pos-
sible if the two spins have compatible labels (i.e., spin 1
has offset 0 and spin 2 has offset —1). Of course, interme-
diate values for ob cause fractional offset biasing.

2.3.2.4. Atomic assignment bias. This bias works exactly
as for offset biasing, except that the atomic assignment
(i.e., the “C,” in “C,_,”) is the critical element rather
than the offset:

rel score’ = (1 — aab) x rel_score upeica + aab
X rel_scoreapeieds-same (6)

where rel_score,,,,, 15 the new labeled score compo-
nent, aab is the control parameter, rel_score;pejeq 18 the
spin pair score considering the presence of labels but
ignoring the atomic assignment, and rel_score;,peied+same
is the spin pair score considering the atomic assignment.
In general atom types are considered compatible if they
are the same (i.e., “C,” and “C,,” or “Cg” and “Cg”).

2.3.2.5. Score threshold. After all spin system pairs have
been scored, the scores for each sub-score type are line-
arly scaled to values between 0 and 1. Any spin system

pair sub-score below a user-defined threshold is reduced
to 0 and no further consideration of this spin pair is gi-
ven for that sub-score type. This does not significantly
change the scoring results, as in most cases an extremely
low threshold is chosen, but is important for reasons re-
lated to computation time. For most proteins, since each
residue is represented by one spin system, the number of
spin system pairs can be as high as the number of pro-
tein residues squared (minus the self pairs, of course).
For most sub-score types, however, most of the scores
for the spin pairs are 0 or very close to 0. Thus, a thresh-
old filter prevents the program from wasting computa-
tion time on useless calculations like multiplication of
zeros by zeros in later stages of analysis.

2.3.2.6. Overall spin system pair scoring. Once each spin
system pair has been scored in all of the desired score
types, these individual scores are combined to form an
overall score for each spin system pair (the spin system
link hypothesis). These combined scores are then sorted
according to their value and stored in the priority list.
The priority list, thus, contains a list of spin system link
hypotheses sorted by their overall fitness scores, which
are a measure of how likely the spin systems in the pair
are to be adjacent in the protein sequence.

The formula used to combine the individual spin pair
sub-scores is a user-defined equation. See Fig. 2B for
examples. All of the standard arithmetic operators are
valid for this “scoring equation” (addition/subtraction,
multiplication/division, and exponentiation). The equa-
tion editor in AutoLink is fully capable of interpreting
nested parenthesis, so complex spectral equations can
be defined. In practice, however, only simple equations
are generally used since for any given protein only a
few assignment spectra are usually obtained, and thus,
there are only a few sub-score types available.

The most useful standard operators used in combin-
ing sub-score types are addition and multiplication,
which can be viewed as analogous to a ‘“fuzzy OR”
function and a “fuzzy AND” function, respectively. In
addition to the standard operators, AutoLink can inter-
pret three non-standard operators, “|,” “&&,” and
“&|.” The | operator is defined as a “quasi-OR” opera-
tion. It is actually a shorthand for the average of its
operands (i.e., 4 || B= (A4 + B) x 0.5). The && operator,
called a “quasi-AND,” is defined as the geometric aver-
age of its operands. Thus 4 && B = VA4 x B. The last
operator, &|, or “quasi-AND/OR” is a combination of
the other two  quasi-operators defined as
A&|B=(4&& B) x 0.5+ (4 || B) x 0.5. These opera-
tors are remarkably useful for defining complex scoring
functions because their product is in the same range as
their operands, allowing easy combination of multiple
scores without worrying about scaling.

Use of mathematical operators instead of true Bool-
ean logic allows AutoLink to compare spin system pairs



140 J.E. Masse, R. Keller | Journal of Magnetic Resonance 174 (2005) 133-151

quantitatively rather than merely qualitatively (see
Table 2 for a comparison of Boolean logic operators
with the “fuzzy” operators usable by AutoLink). In
effect, AutoLink’s comparison of spin systems is entirely
fuzzy-logic based, starting from the initial spin—spin
scores and propagating all uncertainties all the way
through to the overall spin system pair score. Thus the
program can avoid making decisions based on individ-
ual data points in favor of only making decisions based
on the combined match of multiple data points at later
steps in the analysis. Fuzzy logic is also useful because

Table 2
Comparison of Boolean, “fuzzy,” and “quasi” operators

Operand 1 (x) Operand 2 (y) Result

Function name/equation

Boolean AND n/a 1 1 1
1 0 0
0 0 0
0.5 0.5 n/a
1 0.5 n/a
Fuzzy AND x xy 1 1 1
= product 1 0 0
0 0 0
0.5 0.5 0.25
1 0.5 0.5
Quasi-AND /A Xy 1 1 1
= geometric average 1 0 0
0 0 0
0.5 0.5 0.5
1 0.5 0.707
Boolean OR n/a 1 1 1
1 0 1
0 0 0
0.5 0.5 n/a
1 0.5 n/a
Fuzzy OR x + y =sum 1 1 2
1 0 1
0 0 0
0.5 0.5 1
1 0.5 1.5
Quasi-OR (x + ) x 0.5 1 1 1
= average 1 0 0.5
0 0 0
0.5 0.5 0.5
1 0.5 0.75
Quasi-AND/OR 1 1 1
YOTHE) 03 1 0 025
0 0 0
0.5 0.5 0.5
1 0.5 0.729

Demonstration of the function of Boolean operators with “fuzzy,” and
“quasi” operators used by AutoLink to compute overall spin system
pair scoring. As signified by “n/a” in the table, Boolean operators are
not applicable to values other than 0 and 1. The use of fuzzy operators
allows AutoLink to propagate uncertainties in individual scoring
functions into the overall combined result. As can be seen from the
examples, the quasi-operators defined for AutoLink are similar in
function to the fuzzy operators, but maintain the overall value range of
the operands. The quasi-AND/OR operator performs an intermediate
function between a quasi-AND and a quasi-OR.

it allows AutoLink to bias in favor of spin system pairs
that have exact matches in the sub-scoring functions
over spin system pairs with more marginal matches. This
is particularly useful in dealing with high-density spectra
(like NOESYs) and reduces the dependence upon cor-
rect peak-picking and spin system identification by the
user prior to running the program.

After all of the individual scores are combined, the
resulting overall scores are re-scaled to values between
0 and 1, and then filtered according to a user-defined
threshold. This filter is important for the functionality
of the program, because it removes all insignificant spin
system pairs from the priority list. Since most spin sys-
tem pairs are only coincidentally related and therefore
score 0 or very near 0, filtering even with a very low
threshold greatly shortens the base priority list and con-
sequently reduces the number of calculations AutoLink
must perform.

At this point the priority list has been created. It con-
tains information about the relatedness of spin systems
based on the spectral peaks alone. Since the scores in
this list are not a function of other spin system links,
the base priority list must only be calculated once at
the start of the analysis. All of the processing of the link
hypotheses past this point, however, is dependent on the
acceptance or rejection of other spin system link hypoth-
eses, and so all of this processing (i.e., calculation of the
priority prime lists) must be repeated periodically during
the “hypothesis re-evaluation cycles” described below.

3. Hypothesis evaluation/re-evaluation cycles

3.1. Calculation of the base priority prime list (sequence
matching)

As stated above, the priority list undergoes modifica-
tions which are dependent upon the current link hypoth-
eses that have already been accepted as well as existing
spin system—residue assignments. These modifications
produce first the “base priority prime list” and then sub-
sequently the “relative priority prime list.”

The base priority prime list is created from the prior-
ity list by considering how well the fragments that would
be formed upon the acceptance of each hypothesis
would match positions of the protein sequence:

[fragmentScore = [score,.(ss,res;)
X SCOVe,, (882, 7€87) X - - -
X SCOre o (SSy, res,,)]l/", (7)

where fragmentScore is the overall score for the frag-
ment, n is the number of spin systems in the fragment,
sS1, ... ,85, are the spin systems of the hypothetical
fragment, res|—res, represent the residues of the
protein at the relevant positions in the sequence, and
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sCOre.i(ssy, res)) is the relative score of spin system x
against residue position y in the protein sequence when
compared to its match to all other residue positions of
the protein sequence.

In order to evaluate the relative score, score,.
(ssy,resy), each spin system is first scored against each
possible position of the protein sequence according to
SCOFeqps (SSy, TeES))

the following equation (also see Fig. 3):
(S (- )]) e
(8)

where #spins is the number of possible matching spins
between the spin system and the residue, chem-

chemShift,,, — chemShift
standev,.r

resAvg

141

Shift,ps — chemShift,.; 4, is the difference in the chemi-
cal shift of a spin from the experimentally observed
spin system from the empirically determined average
chemical shift for that spin, standev,.; is the empirically
determined standard deviation of the chemical shift for
the comparable spin of the residue the spin system is
being matched to, and b is a user-defined slope of a line.

{ ( chemShift,,, — chemShift >]
Z sx | 1— ,

standev,.y
therefore, is the sum of all of the individual scores from
pairing each spin in the system being tested with all of
the comparable average spins of the residue to which
the spin system is being matched. The above equation
is logically modified such that any term

resAvg
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Fig. 3. Matching of spin system fragments to the protein sequence proceeds in two stages, (A) individual spin system—sequence matching, and (B)
fragment—sequence matching. (A) Each spin system of each fragment is first fit using fuzzy logic to each residue position of the protein sequence (see
Section 3.1 in the main text). In this diagram comparison of a single spin system (ssl1) to each position of the protein sequence is signified by solid
black lines. Though not shown here, ssl and ss12 are also fit to each position of the protein sequence. These fit scores for each spin system are then
scaled to a range of 0-1. The final fitting scores for each spin system to the protein sequence are shown here in rows 1:, 2:, and 3: for ssl1, ssl, and
ss12, respectively, in the “Relative spin system—residue fit scores” boxes. (B) Fragment—sequence fitting: Fragment scores are calculated as the
geometric average of the single spin system relative fits for consecutive positions within the protein sequence. Sequence fitting also takes into account
additional criteria such as already-assigned fragments and specific-isotopic-labeling data.
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chemShift,, — chemShift

standev,os

resAvg

(- )

which results in a negative value is increased to 0. Thus,
the spins of any given spin system produce scores rang-
ing from 0 to 1 which are added together to obtain a
total score for the spin system. Since this score is then
divided by the total potential number of spin matches
between the spin system and the hypothetical matching
residue, the resulting score,(ssy,res,) terms in the
above equations also range from 0 to 1. These scores
represent an absolute criterion, which is closer to 1
for good spin system to sequence matches and nearer
to 0 for poor matches. However, since each spin system
must logically correspond to some residue within the
protein sequence, only relative sequence fitness is of
interest to AutoLink. Thus for each spin system, the
scores to each position of the protein sequence are lin-
early scaled such that each spin system scores 1.0
against at least one position of the protein sequence,
if possible. These “relative” sequence matching scores
are what is referred to by score,.(ss,res)) in the above
equations and are therefore what is used to calculate
the overall fit of any given spin system fragment to
positions within the protein sequence. Relative se-
quence matching allows AutoLink to work well with
spin systems that contain unusual chemical shifts.
Though such exceptional spin systems are generally
considered an asset by human spectroscopists, previous
automated assignment strategies were generally hin-
dered by them. This is because they rely on absolute
criteria which lead to poor scores for spin systems con-
taining unusual chemical shifts. Relative sequence
fitting causes AutoLink to evaluate spin-system-to-resi-
due matching in a way more similar to an expert
spectroscopist.

It is important to note that AutoLink makes no
exceptions in sequence matching for “artifact” spin sys-
tems. Artifacts that cannot be labeled as such by the
user prior to running AutoLink must be treated as reg-
ular spin systems. As is the case for human assigners,
AutoLink must use consistency with the protein se-
quence and with other spin systems in order to rule
out artifactual spin systems as possible assignment
candidates.

The “‘empirically determined average” -chemical
shifts (chemShift,.s4,,) used for sequence matching
can come from any source. Particularly useful is near-
est-neighbor-based prediction. For this purpose, Auto-
Link makes use of the parameters presented by Wang
and Jardetzky [22] which can take predicted secondary
structure into account. The secondary structure predic-
tion can be done using any program [23-25] and the
predictions are easily incorporated into AutoLink’s cal-
culations through its graphical interface. Alternatively,
AutoLink can be instructed to simply use secondary-

structure- and/or nearest-neighbor-independent empiri-
cally defined average chemical shift values.

Since the matching scores for the fragments are calcu-
lated (as described above) by taking the geometric aver-
age of the matching scores of the individual spin systems
to their hypothetical residues, they also fall in the range
of 0-1, with good matches scoring higher than poor
matches. Fragment to sequence matching is additionally
governed by a user-defined threshold parameter. For
any match of a fragment to the protein sequence where
the fitness score is less than the matching threshold, the
score is rounded to 0, and the fragment is effectively not
considered as a potential match to that segment of the
protein sequence. In addition to this requirement, each
individual spin system of the fragment must also match
the protein sequence with a score above the matching
threshold. This means that AutoLink only considers
fragment-sequence matches at sequence positions where
each residue as well as the whole fragment, scored on
relative criteria, fit with the user-defined acceptance lim-
it. This limit is usually set to between 0.2 and 0.4, which
corresponds to an extremely poor sequence match, so
the threshold is generally used only to rule out obviously
impossible matches.

Sequence matching can also take into account data
from specific labeling, restricting each spin system to
match only a subset of the protein residues.

In order to calculate the base priority prime list,
the spin system pair scores from the original priority
list are multiplied by the fragment score of the hypo-
thetical spin system fragment that will be formed if
the spin system link for the pair in the priority list
is accepted. Thus, the base priority prime list contains
spin system pair scores that are both a function of the
relatedness of the spin systems according to the NMR
data, and a function of the fit of the hypothetical
fragment that each would create to the protein
sequence.

Matching of fragments to the protein sequence can
also take two other factors into consideration, putative
secondary structure elements (assessed based on the C,
chemical shifts), and fitting of other fragments into the
protein sequence.

3.2. Calculation of the relative priority prime list (relative
hypothesis prioritization)

Once the base priority prime list has been calculated,
the list is further modified by biasing potentials. These
potentials do not involve any external criteria, but
rather involve only processing of the base priority prime
list by logical internal criteria. This forms the relative
priority prime list, which is the final score list from
which AutoLink’s decisions are derived. The combina-
tion of these biasing potentials gives rise to AutoLink’s
logical decision-making process.
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3.2.1. Score delta bias

Each spin system-pair score in the list is biased
according to the next best hypothesis in the list for
one of the individual spin systems involved in the pair
according to one of the following equations:

score, = (1 —sdb) x scorey_.p + sdb X [score,_p
X (scorey_p — score,_7)] 9)
or

score, _, = (1 — sdb) x scorey_.p + sdb
X [score,_p

X (scorey_p — scorer_p)], (10)

where score,_,p refers to the score of spin system
“A” — spin system ‘“B” before score delta biasing,
score 4_so refers to the next best score for spin system
“A” (spin system “A” — any spin system other than
“B”), score,_,p 1s the next best score for spin system
“B” (any spin system other than “4”—“B”), and sdb
is a user-defined control parameter ranging from 0 to
1. The choice of which equation is used is based on
which score delta is higher, score 4_,» or score,_, 5. Thus,
each base priority prime score is multiplied by a factor
that is dependent on the difference between that score
and the closest related score for one of its spin systems.
As an exception, if the score delta biasing for a partic-
ular hypothesis would shift the score above the score of
an initially better scoring hypothesis that includes the
spin system used to calculate the bias, the score delta
bias is limited such that the new score is just below
the score of the better hypothesis. The result of score
delta biasing is that the relative value of the priority
prime scores changes. Scores from spin system link
hypotheses with lower scoring alternatives are de-
creased less than those with better alternatives (see
Fig. 4).

Score delta biasing, in effect, simulates a ““process of
elimination.” Since spin system link hypothesis ac-
cepted in earlier rounds can affect spin-link hypothesis
evaluation in later rounds, it is important to accept the
hypotheses with the highest relative certainty first,
reducing the need for re-evaluation later. Hypotheses
that initially score well, but have at least one reason-
able alternative are disfavored compared to other spin
hypothesis for which there is no good alternative.
Thus, the hypotheses with few alternatives tend to be
accepted in earlier rounds, and are then used in later
rounds to aid in evaluating other link hypotheses for
which there were initially more than one reasonable
possibility.

3.2.2. Repeat bias

During AutoLink rounds, it is possible for the pro-
gram to get into a cycle, where the acceptance of a set
of link hypothesis leads to a re-evaluation of the priority

prime lists in such a way as to make the link hypothesis
in the set now unfavorable. Thus they can be replaced in
a subsequent round. Sometimes, however, the replaced
links cause the priority prime scores to once again favor
the original links. Unless there is some change in the
scoring of the priority prime lists from one cycle to the
next, it is possible for AutoLink to get caught in an
unending loop, repeatedly trying to sort out a set of
links which cannot be properly evaluated until other
as of yet unaccepted links are taken into consideration.
To solve this problem, AutoLink remembers how many
times a particular spin system has been linked to another
spin system and introduces a small, user-defined, bias
into all of that spin system’s priority prime scores. This
bias is defined by:

score’ = score x rb?/Rereats (11)

where rb is the user-defined input parameter between 0
and 1, and #ofRepeats is the number of times the spin
system’s link partner was determined or re-determined.
#ofRepeats is generally set to a value close to but not
equal to 1, so that only multiple repeat events have a
significant effect. The result of repeat biasing is that
link hypotheses that are constantly being re-evaluated
are reduced in priority until they score lower than
other hypotheses which are not being repeatedly tested.
In effect, uncertain hypotheses are ‘“‘saved for later”
until other hypotheses have been evaluated that might
be able to be used to sort out the ambiguity. Thus,
with a repeat bias setting <1, it is impossible for Auto-
Link to get stuck in a loop. It simply lowers the prior-
ity of the involved hypothesis for later re-evaluation
once more of the rest of the hypotheses have been
considered.

The combination of score delta biasing and repeat
biasing also give AutoLink an unusual ability to “de-
termine what can be determined” in an NMR assign-
ment problem. Score delta biasing causes link
hypotheses with more than one reasonable alternative
to be disfavored by the program until all of the alter-
natives can be ruled out. Eventually, once all of the
reasonably determinable link hypotheses have been ac-
cepted, if any link hypotheses remain, they are ac-
cepted and rejected repeatedly, as AutoLink considers
each alternative, until the repeat bias increases to a
point where the program aborts any further consider-
ation of any of the hypotheses involved (see Section
3.2.4). These remaining hypotheses are thus considered
by AutoLink to be undeterminable, since none of the
alternatives can be unambiguously chosen.

3.2.3. Random factor bias

All of the priority prime scores can be adjusted
according to user-controlled random factors. The ran-
dom factor generation is controlled by the following
equations:
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A Hypothesis evaluation/re-evaluation round: 1

Base priority prime list  Relative priority prime list

1: ssA—>ssB (0.88) 1{ssC—>ssB|(0.44/1.00) e e e
2:ssC—ssB (0.77) 2: ssA—ssB (0.35/0.80)

3: ssA—ssD (0.48) —>3: ssA—»ssD (0.23/0.52)
4: ssC—ssD (0.20)=—>4: ssC—ssD (0.04/0.09)

Hypothesis evaluation/re-evaluation round: 2

Base priority prime list  Relative priority prime list

1: S5A==0eBABE] - 1{ssCssB](0.44/1.00)

2: ssC—ssB (0.77) 2: S52=ssE (0.35/0.80)
3: ssA—ssD (0.48) —>3ssA—ssD|(0.23/0.52) [T e
4: ssC—ssD (0.20)=—>4: ssC—ssD (0.04/0.09)

B Next best hypothesis for ssA—? is ssA—ssD so (using eq. [10]):

score! , ,, = sdbx[0.88x(0.88—0.48)] = 0.35

Next best hypothesis for 7—ssB is ssC—ssB so (using eq. [11]):
score' ., = sdbx[0.88x(0.88-0.77)] = 0.10

Since 0.35 > 0.1, 0.35 is the score used in the relative priority prime list.

Fig. 4. (A) Demonstration of RHP principal. For this demonstration, the score delta biasing control parameter (sdb in Egs. (10) and (11)) is assumed
to be set to 1. Each gray box represents a priority list both before (left) and after (right) score delta biasing. For simplicity’s sake, a model priority list
containing only four hypotheses is shown. For typical NMR assignment problems, the length of the priority lists ranges from hundreds to tens of
thousands of hypotheses. The link hypotheses in each list are denoted by spin system pairs (ex: ssA — ssB) followed by their priority (fitness) score in
parentheses. In the base priority prime lists, the scores shown have already been scaled to 0—1. In the relative priority prime two scores are shown in
order to aid the reader in following the calculations. The first of these is the priority score just after relativity biasing. The second score is the relativity
biased score re-scaled to values between 0 and 1. Each list is ordered from highest priority score to lowest. Accepted hypotheses are shown in bold.
Two rounds of hypothesis evaluation are shown in order to demonstrate the effect of preceding rounds on later rounds. It should be noted that
ordinarily more than one hypothesis would be accepted per round by AutoLink and an “unlinking” round would separate the two linking rounds
(see Section 3 in the main text). For clarity the process has been simplified by reducing the number of accepted hypotheses per round to one and
therefore no unlinking round is possible. (Top) Initially ssA — ssB has the highest priority before score delta biasing (left panel). However, since there
are mutually exclusive alternatives (ssC — ssB, ssA — ssD) the priority of the ssA — ssB link hypothesis is reduced (top right panel). The priority of
ssC — ssB, on the other hand increases, since the next alternatives for ssC — ? is relatively low priority (0.2). This allows the priority of ssC — ssB to
exceed that of both ssA — ssB, allowing it to be accepted preferentially. (Bottom) The acceptance of ssC — ssB in the previous round rules out the
ssA — ssB hypothesis (shown with a red cross over it) since ssC — ssB and ssA — ssB are obviously mutually exclusive. Thus, since ssC — ssB was
accepted in the first round, AutoLink will now ignore the ssA — ssB hypothesis and is free to choose the ssA — ssD alternative. (B) Sample
calculation of relativity biasing for the link hypothesis ssA — ssB from the priority list in Fig. 4A.

randomFactor = a x centerRandomFactor + b where rand(x,y, z) refers to the sum of x pseudo-random
numbers generated by the standard C++ random num-

X (posRandomFactor . .
ber generator and ranging from y to z, nc is a user-de-

+ negRandomFactor), (12) fined parameter indicating the number of “on center”

random numbers that will be included in the calculation,

centerRandomFactor — rand(ne, —1,1) 7 (13) noc refers to the number of “off-center” random num-
nc bers to be included. ¢ and b are user-defined weighting

rand(noc, 0, 1) factors controlling the weighted addition of the off-center

posRandomFactor = nocx?2 ' (14) and on-center random numbers. With this set of param-
eters it is possible to design a wide variety of random
negRandomFactor = rand(noc, —1,0) ’ (15) number distributions. The priority prime score for each

noc x 2 residue pair is then modified according to the formula:
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scoré' = (1 — rfb) x score + rfb X score

x randomFactor®” x randAmp, (16)

where rfb is a user-defined weighting factor ranging
from 0 to 1 which controls what percentage of the base
priority prime score is multiplied by the random factor,
exp 1s a user-defined exponent, and randAmp is a multi-
plier that controls the magnitude of the random factor’s
effect. Inclusion of a significant random component to
the priority prime scores causes AutoLink to temporar-
ily re-organize the priority prime list, allowing the pro-
gram to test marginal hypotheses at random relatively
early in its analysis. Since the random factors are re-cal-
culated during every round of linking/unlinking, a
hypothesis that was accepted in an early round due to
a random increase in its score will typically only be
maintained in later rounds if new spin system links are
subsequently formed that stabilize the link. Random
factor bias can be modeled in terms of human logic in
terms of “what if?” type of thinking. Hypotheses can
be temporarily accepted in order to investigate either
subsequent confirmation or disqualification of the
hypotheses. It is noteworthy that inclusion of a signifi-
cant random component into the priority prime scores
will lead to at least some increase in the range of possible
results given any particular set of data. Thus, a high de-
gree of random factor biasing is only useful in the con-
text of multiple runs of the AutoLink program, where
the comparison of the final results by the user is used
to rule out unlikely answers.

3.2.4. Evaluation of the relative priority prime list

Once the relative priority prime list is established,
AutoLink begins linking related spin systems. The gen-
eral approach is that the relative priority prime list is
scanned in order of highest to lowest scores and the
new link hypotheses with the highest scores (highest pri-
ority) are accepted and linked. Since the scores have al-
ready been processed by both score delta biasing and
repeat biasing, only link hypotheses with no good alter-
natives are at the top of the list. Thus AutoLink always
accepts only hypotheses with relatively high certainty.
Since the acceptance of link hypotheses affects spin sys-
tem to protein sequence matching, score delta biasing,
and repeat biasing, only a small number of hypotheses
should be accepted before the base priority prime list
and relative priority prime list must be re-calculated.

Because of this, the linking process is divided into
“rounds,” with a user-defined maximum number of
new links formed each round. Each round, AutoLink
evaluates the spin system link hypotheses by calculating
the base priority prime list and then the relative priority
prime list, and subsequently accepts a user-defined num-
ber of hypotheses at the top of the list.

There is one additional criteria required for evalua-
tion of the relative priority prime list—no link hypothe-

sis is accepted if it would preclude another link
hypothesis that ranks higher in the list. Since the relative
priority prime list is evaluated sequentially, this causes
the program to proceed in a manner of another “process
of elimination.” Spin system link hypotheses can be ac-
cepted even if one or both of the spin systems of the pair
is involved in a higher scoring pair as long as the higher
scoring pair or pairs is itself involved in a yet better scor-
ing pair.

Since the formation of new spin system links affects
the relative scoring of previously accepted link hypothe-
sis, each round of linking is followed by a round of
unlinking. That is, after each linking round where new
spin system link hypotheses are considered, the priority
prime lists are re-calculated and, subsequently, the worst
scoring links are removed. Thus, the program re-consid-
ers its prior conclusions “in the light of new informa-
tion.” For example, if initially spin system “A4” — spin
system “B” is linked, and later the spin system
“B” — spin system “C” is accepted (forming the frag-
ment “4 — B— C”), then it may be that the link be-
tween “A” and “B” becomes less favorable because
the fragment “4 — B — C” does not map into the same
position in the sequence of the protein as the fragment
“4A— B” did. Thus, the link between “A” and “B”
may be broken, especially if spin system “A4’’ has other
reasonable alternative link hypotheses.

Just as the number of new links per round is con-
trolled by a user-defined parameter, so also is the num-
ber of possible “unlinks” per round. The number of
links broken per round, however, is restricted such that
at least one net positive link will be gained per round
whenever possible.

Linking/unlinking rounds proceed alternatingly until
either a user-defined number of rounds is reached, or all
of the remaining spin system link hypotheses not ac-
cepted are below a user-defined threshold. This thresh-
old is generally set to a value far below the range of
reasonable spin system links, relying on score delta bias-
ing and repeat biasing to reduce all inconclusive hypoth-
eses below it. AutoLink, therefore, performs spin system
linking/unlinking in a directed manner, starting from
the best hypothesis and working its way down the rela-
tive priority prime list, evaluating and re-evaluating its
results until the best net ensemble of links is formed
according to the scoring of the relative priority prime
list. Since the relative priority prime list takes into ac-
count scores from one or multiple spectra as well as fit
into the protein sequence, the links formed by AutoLink
produce spin system fragments that are consistent with
both the NMR data and with the known protein
sequence.

3.2.5. Spin system fragment assignment
AutoLink can be directed to assign fragments whose
position can be unambiguously mapped into the protein
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sequence. The algorithm AutoLink uses to assign frag-
ments to positions within the protein sequence is itself
a cycle. At the beginning of the cycle, all of the frag-
ments created by previous linking/unlinking cycles are
considered unassigned. Each fragment is then scored
(Eq. (7)) against the protein sequence and the fragments
are prioritized according to the nth root of that score,
where 7 is the length of the fragment. The fragment that
has the highest priority and that has only one available
fitting sequence position according to the sequence fit-
ting threshold (also described in Section 3.1) is assigned
first. The nth-root-based modification of the fragment
score causes AutoLink to bias in favor of forming longer
fragments (which are generally more likely to be cor-
rect), but still allows a relatively well-fitting fragment
to out-compete a longer fragment if its sequence match
is significantly better. After the first fragment has been
assigned, each fragment is re-scored against the remain-
ing unassigned parts of the protein sequence, and, again,
the highest priority fragment that matches only one po-
sition within the protein sequence is assigned. This cycle
continues until no fragments remain that can be unam-
biguously assigned to the protein sequence. Fragment
assignment is governed by another parameter—no frag-
ment is assigned that is shorter than a user-defined
length criterion.

There are two points during the hypothesis evalua-
tion/re-evaluation cycles at which the program can be
directed to assign the fragments—at the beginning of
each linking round and/or at the beginning of each
unlinking round. Assignment of fragments during the
linking/unlinking cycles allows AutoLink to take the
current fragment assignments into consideration during
spin-link hypothesis evaluation. Spin links that lead to
fragments whose only favorable matching positions
within the protein sequence are assigned to another
fragment will be excluded from consideration unless
the fragment matches a sequence better than the frag-
ment that is already assigned to that sequence. During
the linking phase of the linking/unlinking cycle, this
causes AutoLink to never build a fragment which does
not have a corresponding sequence fit within the pro-
tein sequence that is either unassigned at the time the
fragment is created, or assigned to less favorable frag-
ment choice than the new fragment. During the unlink-
ing phase, AutoLink will break any fragment that does
not have such an available sequence match at its weak-
est link. Thus, if new links create a new fragment that
matches a part of the protein sequence better than any
of the previously existing fragments, any fragments
which conflict with the new fragment are broken at
their weakest link, and the resulting shorter fragments
are freed for re-consideration in subsequent linking/un-
linking cycles.

Additionally, AutoLink can be directed to assign
fragments only after all of the linking/unlinking cycles

have been completed, allowing the user the freedom to
resolve conflicts manually.

3.3. Program inputloutput

AutoLink has a sophisticated graphical user interface
(GUI) (Fig. 5), using the powerful library of CARA,
which aids the user in both setting up the input controls
and interpreting the output spin system fragments and
assignment. The input controls are associated with col-
or-changing indicators in order to make it easier for
the user to scan the control panels and assess the pro-
gram’s current state. Likewise, the output displays re-
port a color-coded summary that allows the user to
assess the quality of the assignments, whether they were
made by AutoLink or by the user.

AutoLink can also be used interactively, giving the
user more control over the assignment process. It can
accept prior assignments from the user and use them
to aid in further assignments. It can also accept prior
link hypotheses defined by the user and consider them
as either absolute truths or suggestions, depending on
the user’s specification. Interactive use of the program
is very helpful in debugging the input spin systems, as
mistakes from the human user are quite frequent.

3.3.1. Applications

Test data were downloaded from the Biomagnetic
Resonance Bank (BMRB) site at: http://www.bmrb.
wisc.edu. The data were obtained from BMRB Acces-
sion Nos. 4678 [26], 5106 [27], 5166 [27], 5329 [28],
5335 [29], 5589 [30], 5656 [31], 5691 [32], 5842 [33],
5844 [34], 5845 [35], 5859 [36], 6011 [37], 6052 [38],
6128 [39], 6138 [40], 6176 [41], 6209 [42], 6318 [43],
6341 [44], and 6344 [45]. Of these sets, the peak informa-
tion was available from 6128, 6176, and 6318. For the
remaining 18 test data sets, the published chemical shifts
were used to create predicted peaks. For each test, the
peak data obtainable from an HNCACB [18-20], a
CBCA(CO)NH [21], an HNCO [18-20], an HN(CA)CO
[18-20], and a "*N-correlated NOESY [18-20] were sim-
ulated. For the simulated peaks in the carbon-correlated
spectra, the peak positions were randomized by adding a
pseudo-random number between 0 and 0.4 ppm to the
carbon chemical shift of each inter-residue crosspeak.
This variance was generally consistent with the real peak
data for C,s and Cgs of the data sets 6128, 6176, and
6318, but somewhat above what was observed for the
carbonyl crosspeaks. In our own data for ACF RRMs
2 and 3, 0.4 ppm corresponds roughly to the average
linewidth of the HNCA crosspeaks. The NOESY cros-
speaks were simulated by transferring assigned 'H cros-
speaks from their native spin system to the adjacent spin
systems and randomizing their positions by up to
0.025 ppm, a value also consistent with the ’N-NOESY
data obtained for ACF RRMs 2 and 3.
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Fig. 5. Main AutoLink program window. The scoring controls for each sub-scoring function are located in the left scroll view. Each sub-score type is
controlled by a separate subsection of the window. The C, scoring controls are currently shown at the top of the window. Each subsection of the
window contains a series of file i/o devices as well as potentiometer-type controls for each of the scoring function biases (see Section 2.3.2 in the main
text). Color-coded indicators aid the user in quickly scanning the display and avoiding errors. At the bottom of the main display window there is the
scoring equation editor. This window contains several selectable equation examples as well as intelligent right-click driven hints to help the user
design correct scoring equations. The right scroll window contains the linking controls—that is controls that affect the functions used during the
hypothesis evaluation/re-evaluation cycles (see Section 3 in the main text). Thus, these controls handle spin system to sequence matching and the
RHP decision-making process. Sequence-specific control functions, such as chemical shift prediction input, are entered by clicking on the “Sequence
Control” button at the top of the window and entering the desired settings into a sub-window containing a point-and-click graphical interface.
Currently the central view window is showing the “fragment display.” This display is primarily used to aid in the assessment of existing spin system
links and assignments. Each fragment is represented by three rows of color. The center row shows the spin systems that make up the fragment and
their corresponding assignment with the protein sequence if the fragment has been assigned. The center rows are color-coded according to the overall
score of each spin system link according to the NMR data. Links that are well supported by the data are yellow while poorer links become more red.
Individual sub-scores can be viewed by right clicking between the spin systems. The top row shows the relative fit of each spin system to its position
within the protein sequence. The color coding ranges from white (good fit) to blue (marginal fit) to red (poor fit). Right clicking on this row shows the
contribution of each spin of the spin system to the overall fit to the protein sequence. The third row of each fragment representation shows the
deviation of the C, observed from the empirically derived mean. The color coding is as follows: blue signifies more B-sheet-like C,s, green signifies
more a-helical C,s, and intermediate blue-green color signifies random-coil-like C,s. Additionally, each fragment is listed with its best overall fit to
the protein sequence, how many positions within the protein sequence the fragment matches, and what alternative positions are reasonable.

Since peak data were available for test sets 6128,
6176, and 6318, these peaks were used for these tests
rather than simulated crosspeaks. A few obvious correc-
tions (such as correction of atomic assignments) were
made where necessary. For test sets 6176 and 6318,
the HNCA, HNCACB, HNCA, HN(CA)CO, and
ISN-NOESY peaks were used since these data were suf-
ficient to obtain 100% of the maximum possible result.
For test set 6128 the CCONH [19,20] crosspeaks were
additionally used. This allowed the assignments to reach
99% (only 90% assignments were achieved without the
CCONH crosspeaks). This data set, however, contains

13 extra spin systems that were somewhat redundant
with the assignable spin systems, as well as multiple
missing carbonyl and Cg crosspeaks and sparse NOE
crosspeaks.

All of the calculations on the test data sets were per-
formed on a Mandax workstation with a 1.21 GHz Ath-
lon processor and 512 MB RAM. These test data sets
are available for download from the AutoLink website:
http://www.autolink.nmr-software.org/index.htm.

Calculations on experimental data for the RRMs of
ACF were performed on a Dell Precision 340 worksta-
tion with a 2.53 GHz Pentium 4 processor using all of
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the spectra described under Section 2.2. Of the 102 spin
systems visible in the spectra of RRM 2, all C, and C,_;
crosspeaks were identifiable and of the Cg_; crosspeaks
three were missing. Of the 91 spin systems that were
present in the data for RRM 3, all of the spin systems
had identifiable C, and C,_; crosspeaks, and all but
one had an identifiable Cg_; crosspeak.

It should be noted that while AutoLink has the abil-
ity to incorporate secondary structure prediction and
nearest-neighbor chemical shift prediction into its anal-
ysis, neither of these functions was necessary in order to
achieve good results on any of the test or experimental
data. Both functions were tested, however, for their ef-
fect on the assignments of ACF RRM3.

4. Results
4.1. Automatic assignment of test data from BMRB

Out of all of the test data sets, only one was under-as-
signed—6128. In no cases were incorrect assignments
obtained. Even for data set 6128, which has a high de-
gree of overlap, 99% of the correct assignments was
achieved. See Table 3 for a summary of these tests.

4.1.1. Automatic assignment of RRM 2 and 3 from ACF

We applied AutoLink to solve the backbone reso-
nance assignments of RRMs 2 and 3 from ACF. The
available NMR spectra for each protein fragment were

Table 3
Summary of results of AutoLink on test and experimental data sets

Molecule (BMRB accession number) Number of residues ~ Number of assignable spin systems  Number of assigned

spin systems

Simulated data

RNA polymerase subunit RPBS5 (4678) 77 71 77
MTH1743 (5106) 70 70 70
Hemolysin expression modulating protein Hha (5166) 72 72 72
C. elegans protein ZK652.3 (5329) 94 94 94
E. coli protein YacG (5335) 68 64 64
V. cholerae VC0424 (5589) 132 125 125
Staphylococcal protein A (5656) 71 71 71
30S ribosomal protein S28E from P. horikoshii (5691) 82 78 78
H. influenza protein IR24 (5842) 134 115 115
S. aureus protein SAV1430 (5844) 91 87 87
S. aureus protein MW2441 (5845) 102 96 96
Antibacterial peptide microcin J25 (5859) 21 21 21
A. thaliana protein At5g22580 (6011) 111 110 110
Haemophilus human protein HR969 (6052) 149 139 139
A. thaliana protein At2g24940.1 (6138) 109 103 103
A. thaliana protein At3g03410.1 (6209) 67 67 67
A. thaliana protein At3g04780.1 (6341) 161 160 160
Human protein HSPCO34 (6344) 143 143 143
Real data—known assignments

A. thaliana protein At3g01050.1 (6128) 101 114 94
Ubiquitin-like domain of tubulin-folding cofactor B (6176) 120 117 117
A. thaliana thioredoxin hl (6318) 124 109 109
Real data—unknown assignments

Human ACF RRM2 108 102 71
Human ACF RRM3 115 91 85

Summary of results of AutoLink on test and experimental data sets. Shown is a list of the protein analyzed with its BMRB accession number
followed by the number of residues in the protein construct on which the data were acquired (including vector sequences), the number of assignable
spin systems observed in the spectral data, and the number of spin systems assigned by AutoLink. For each of the test sets involving simulated peak
data, one spin system was created for every residue assignment published on the BMRB website. Since complete assignments were not available for
all of the test proteins, several of the test sets have a maximum number of assignable spin systems that is lower than the number of residues of the
protein. In most cases, however, assignments were available for proline residues. Even though these spin systems would not be present in the
simulated amide-correlated spectra, they were included in the analysis (if C,, Cp, or CO resonances were known) to increase the stringency of the
tests. In the experimental sets derived from real peak data, however, prolines were unassignable since they did not give rise to amide-correlated
crosspeaks. For BMRB test set 6128, although the number of assignable spin systems listed is 114, in fact the actual maximum number of assignments
possible was 95, since six of the proteins residues are prolines. AutoLink successfully identified 93 of the assignments exactly as the published
assignments in the BMRB data. The program did substitute spin system 108 for spin system 110 as the assignment for the last residue of the protein.
This is not regarded as a misassignment, however, as spin systems 108 and 110 are overlapped in the '’N-HSQC and have quite similar '*C chemical
shifts. Although the number of assignments for the two RRMs of ACF is rather low, it should be noted that much of the unassigned residues of the
proteins are outside of the folded domains. For folded regions of RRM2, and RRM3, not including prolines, 84% of RRM2 was assigned and 97% of
RRM3. The main limiting factor in determining the rest of the assignments is missing crosspeaks in the spectra of these molecules.
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a N-correlated NOESY, an HNCA, a CBCA(CO)NH,
and a ">N-HSQC.

For RRM 3, the protein fragment we used was 115
residues long, leading to spectra of reasonable quality
and sensitivity with several overlapped spin systems.
Spin picking of the spectra was done semi-automati-
cally, with initial peak identification done using stan-
dard local maxima assessment by in-house Lua scripts
written to work in CARA followed by manual inspec-
tion and editing. Of the 115 spin systems, only 90 were
visible in the 3D spectra. The program was run using
the default control parameters and using the spectral
scoring equation: overall score =H && CA. This
equation defines a ‘“quasi-AND” operation between
each spin system pair’s C, score (obtained from the
HNCA peaks) and NOESY (H) score (obtained from
the ""N-NOESY peaks) as described in Section 2.3.2.6.
AutoLink ran through 120 linking/unlinking cycles with
fragment assignment considered in all linking and
unlinking rounds. The program terminated itself after
approximately 2 h. Each spin system link and assign-
ment was subsequently inspected visually in all three
input spectra using CARA. Initial evaluation of the re-
sults showed that three spin systems had been picked
incorrectly. AutoLink refused to link these spin systems
until the corrections were made. Upon correction of the
input and re-execution of the program, 79 spin system
links were created by AutoLink, all of which appeared
probable based on visual inspection. Seventy-five of
the linked spin systems were assignable, almost all of
which were mapped to the folded domain (assessed
based on sequence homology) of the protein. In fact,
94% of the folded domain was assigned, with the
remaining unassigned residues being prolines (P30,
P68), whose backbone N cannot be assigned from the
three input spectra, and/or being from short loops with-
in the RRM domain (L52, R88). Additionally, much of
the sequence adjacent to the folded domain was also
assigned. Inspection of the remaining unassigned five
spin systems showed that they could not confidently be
assigned to the missing loop segments and that they
were probably part of the leader sequence surrounding
and including the HIS(6) tag. Since much of the leader
sequence residues did not show up in the spectra, the
leader sequence was also unassignable.

For RRM 2, the spectra obtained were of substan-
tially lower quality than those of RRM 3, as the mole-
cule showed limited solubility. To solve this problem,
we included a stoichiometric amount of target RNA in
the sample. Despite improvement in the solubility, the
signal-to-noise remained substantially lower than that
for RRM 3, and there was much more overlap evident
both in the ""’N-HSQC and in the '*C dimensions of
the 3D spectra. Initial spin system picking was per-
formed as for RRM 3 above and AutoLink was run
on the input using the same input parameters. The out-

put was inspected with AutoLinks’s fragment display
with CARA’s spectrum viewing tools and some obvious
errors in the spin system peak identification were cor-
rected. Upon re-running the program ~80% of the
non-proline residues of the RRM domain could be as-
signed. With a few more rounds of inspection, spin sys-
tem correction and program execution, 84% was
assigned. The remaining spin systems could only be as-
signed with marginal certainty or were unassignable
due to poor representation of the spin systems in the
spectra. Overall, the assignment of RRM 2 took about
2 days time with most of the time being occupied by
the computer. The assigned residues were C29-136,
K38-V61, S64-D67, G73-K91, and R96-W108.

The overall results obtained from both RRMs 1 and
2 verify AutoLink’s ability to discriminate between
determinable and undeterminable parts of the assign-
ment problem. As a further test of AutoLink’s ““solvabil-
ity” discrimination, it was also run on RRM 3 using
only two of the three available 3D spectra. The results
varied according to which spectra were included, but
were consistent in that, in each case, substantially less
complete assignments were obtained. This is expected
since the three spectra combined are considered to be
the minimum required amount of NMR data to obtain
objective backbone resonance assignments of most pro-
teins of this size. For those assignments that were
obtainable with fewer spectra, however, the results gen-
erally were consistent with those obtained when all three
spectra were included. The best case was when the
NOESY data were excluded from the analysis (leaving
only an HNCA and a CBCA(CO)NH) but when nearest
neighbor-predicted chemical shifts were used based on
secondary structure predictions from YASPIN [22].
Only the secondary structure predictions for sequences
with the highest confidence ratings were used. Neverthe-
less, AutoLink was still able to assign 73 spin systems
correctly with no misassignments. This is good evidence
that AutoLink’s solvability discrimination causes the
program to only report relatively certain results.

5. Discussion
5.1. Overall approach to using AutoLink

The usual paradigm to proper use of AutoLink is to
first start with stringent input parameters for the first
run, inspect the results, and then run subsequent analy-
sis with either less stringent parameters or more strin-
gent sequence restrictions. Subsequent runs of
AutoLink are generally used to try and get the program
to compensate for human errors in the input spin sys-
tems. Thus, at first AutoLink is run with all of the biases
set to 1, except for the repeat bias (which is always set to
around 0.95) and the spin system label biases for the
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NOESY peaks (which are set to 0 since the NOESY
peaks are not labeled prior to backbone resonance
assignment). The carbon matching functions are gener-
ally set to medium-width triangular spin—spin compari-
son functions, while the H-H (NOESY) scoring
function is best set to a narrow parabola (this is because
the NOESY spectra are comparatively high-peak-den-
sity). Furthermore, the first run of AutoLink is usually
executed with a stringent scoring equation, which is
either a multiplication of or a quasi-AND of the input
spectrum score types. Later runs, if necessary, generally
are less stringent, but benefit from maintaining the re-
sults of the prior stringent runs by instructing to pro-
gram to not change the spin system links and
assignments from previous runs. A wide variety of pos-
sibilities exists for the relaxation of requirements for
subsequent runs, but the most useful are substitution
of ANDs with ORs or AND/ORs and multiplication
with addition in the scoring equation. This allows Aut-
oLink to compensate for either wrong data or a lack
of data in one spectrum if there is a clear match in an-
other spectrum. Alternatively the user can adjust the
biasing controls of the individual scoring functions to al-
low for the possibility of human error. Though the ini-
tial run of AutoLink takes a few hours, the subsequent
runs are usually done in a few minutes. This is because
most of the spin system links are pre-formed by the ear-
lier AutoLink runs, so the program has much less to
consider in subsequent runs.

It is, in fact, also possible to direct AutoLink to effec-
tively combine stringent and non-stringent score require-
ments in a single run of the program simply by defining a
more complex scoring equation with higher coefficients
on more stringent scoring terms and lower coefficients
on less stringent scoring terms. The biasing potentials
can also be used to contribute to this “one-run” ap-
proach by setting them to values >0.5 but <1.0. This
causes the program to bias heavily in favor of the user’s
interpretation of the input data while still allowing at
least some room for error. In practice, however, such
complicated approaches and often even subsequent runs
of AutoLink are not necessary, as the program usually
gives enough results to allow the user to correct input
mistakes and finish the assigning semi-automatically
quickly using the graphical output display and CARA.

6. Conclusion

AutoLink demonstrates an unusual level of intelli-
gence with regard to obtaining backbone resonance
assignments from NMR data. Its ability to discriminate
between solvable and unsolvable parts of assignment
problems gives it the ability to produce high-confidence
solutions. Though AutoLink’s logical capabilities are
advanced, further improvement is possible. Currently

AutoLink must work from user-identified spin systems
and spins. We performed the initial identification of
these data elements with an automatic peak picker using
a standard local maxima approach. Such a device, how-
ever, invariably produces mistakes, and therefore the
spin systems must be visually inspected by the user prior
to using AutoLink.

Since AutoLink uses scoring functions in order to
evaluate the relatedness of spins and spin systems, it is
possible to add additional scoring functions that per-
form correlations directly on the spectral data itself.
This would effectively allow AutoLink to be able to
“see” the data, reducing the need for accurate peak iden-
tification prior to running the program. This type of
spectral evaluation combined with the integration of
an RHP-based automatic peak picking and spin system
identification algorithm could allow the program to
work completely from raw data, possibly with no prior
spin system input from the user at all.

It should also be possible to develop an RHP-based
strategy to assign side chains.

AutoLink is available for free download at http://
www.autolink.nmr-software.org/index.htm with pre-
optimized default parameters preset in the program.
A basic user manual is also available at http://www.
autolink.nmr-software.org/index.htm/instructions.
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